Horizon 2020 - bando UE Clean Sky 2 per ricerca aeronautica

|Novità|07 novembre 2018

Clean Sky 2Pubblicato il nono bando del partenariato pubblico-privato Clean Sky 2 per la ricerca nel settore dell'aeronautica. A disposizione 60,1 milioni di euro.

Droni - via al network UE per investire in progetti innovativi 

L'iniziativa Clean Sky 2 ha pubblicato il nono bando per la ricerca nel settore dell'aeronautica, attraverso il quale saranno finanziati nuovi progetti. Le risorse stanziate ammontano a 60,1 milioni di euro.

Clean Sky 2, programma UE per aeronautica

Clean Sky 2 è il principale programma di ricerca europeo nel settore dell’aeronautica per il periodo 2014-2020 e porterà avanti gli obiettivi del programma precedente, Clean Sky Joint Technology Initiative (JTI), con particolare attenzione alla riduzione delle emissioni di CO2, NOx e rumori dal 20% al 30%.

Al pari di Clean Sky JTI, Clean Sky 2 è un partenariato pubblico-privato (PPP) che coinvolge la Commissione europea, organizzazioni, imprese, centri di ricerca e università di tutta Europa.

Lo strumento è finanziato con 1,75 miliardi di euro dall’UE nell’ambito del programma europeo per la ricerca e l'innovazione Horizon 2020 e con 2,2 miliardi di euro dai soggetti che aderiscono all'iniziativa, per un investimento totale di circa 4 miliardi di euro.

CEF Trasporti - come cambiera’ nel bilancio UE post 2020 

Nono bando Clean Sky 2

Il nono bando Clean Sky 2 verte su vari argomenti (topic):

  • JTI-CS2-2018-CFP09-AIR-01-40: Anticontamination Coatings and Cleaning Solutions for Laminar Wings
  • JTI-CS2-2018-CFP09-AIR-02-68: Spring-in prediction capability for large integral wing structure [SAT]
  • JTI-CS2-2018-CFP09-AIR-02-69: Biphasic Heat Transport Integration for Efficient Heat Exchange within Composite materials Nacelle
  • JTI-CS2-2018-CFP09-AIR-02-70: Development and application of an innovative methodology devoted for high temperature characterization of high efficient composite structures
  • JTI-CS2-2018-CFP09-AIR-02-71: Model Manufacturing and Wind Tunnel Testing of High Lift System for SAT Aircraft
  • JTI-CS2-2018-CFP09-AIR-02-72: MEMS sensors, wireless and innovative measurement systems for validation of HVDC system Structure integration and for new SHMS architectures
  • JTI-CS2-2018-CFP09-AIR-02-73: Material modelling platform for generation of thermoplastic material allowable
  • JTI-CS2-2018-CFP09-AIR-02-74: Development of a multipurpose test rig and validation of an innovative rotorcraft vertical tail
  • JTI-CS2-2018-CFP09-AIR-02-75: Design Against Distortion: Part distortion prediction, design for minimized distortion, additive manufactured polymer aerospace parts
  • JTI-CS2-2018-CFP09-AIR-02-76: Cost analysis software platform for evaluating innovative manufacturing technology for SMART fuselage
  • JTI-CS2-2018-CFP09-AIR-03-06: Calibrating Ultrasonic Sensors for atmospheric corrosion
  • JTI-CS2-2018-CfP09-ENG-01-39: Measurement of rotor vibration using tip-timing for high speed booster and evaluation of associated uncertainties
  • JTI-CS2-2018-CfP09-ENG-01-40: Turbulence modeling of heat exchangers and roughness impact
  • JTI-CS2-2018-CfP09-ENG-01-41: Ground vortex characterization method applicable for engine testing
  • JTI-CS2-2018-CfP09-ENG-01-42: Additive manufacturing boundary limits assessment for Eco Design process optimization [ECO]
  • JTI-CS2-2018-CFP09-FRC-01-25: Smart Active Inceptors System definition for Tilt Rotor application
  • JTI-CS2-2018-CFP09-FRC-01-26: Design, manufacture and deliver a high performance, low cost, low weight Nacelle Structure for Next Generation TiltRotor (NGCTR) - Technology Demonstrator (TD)
  • JTI-CS2-2018-CFP09-FRC-01-27: Tilt Rotor Whirl Flutter experimental investigation and assessment
  • JTI-CS2-2018-CfP09-LPA-01-58: BLI configurations of classical tube and wing aircraft architecture - Wind tunnel tests insight into propulsor inlet distortion and power saving
  • JTI-CS2-2018-CfP09-LPA-01-59: Fan inlet advanced distortion simulator
  • JTI-CS2-2018-CfP09-LPA-01-60: Innovative low noise fan stator technologies for 2030+ powerplants
  • JTI-CS2-2018-CfP09-LPA-01-61: Fatigue life prediction on Inco 718 part subject to service induced damages
  • JTI-CS2-2018-CfP09-LPA-01-62: Rear End Structural Test Program – Component & Subcomponent tests
  • JTI-CS2-2018-CfP09-LPA-01-63: Rear End Aerodynamic and Aeroelastic Studies
  • JTI-CS2-2018-CfP09-LPA-01-64: Rear End Structural Test Program - Low level
  • JTI-CS2-2018-CfP09-LPA-01-65: Development of System pipework and Tooling for Sub-Assembly, Final-Assembly of the HLFC-wing Prototype
  • JTI-CS2-2018-CfP09-LPA-01-66: Shielding/High-lift composite thermoplastic flap manufacturing, tool design and manufacturing & process definition
  • JTI-CS2-2018-CfP09-LPA-01-67: UHBR Installed Advanced Nacelle Optimisation and Evaluation Close Coupled to Wing
  • JTI-CS2-2018-CfP09-LPA-01-68: Non-Intrusive Flow Field Measurement within a UHBR Intake
  • JTI-CS2-2018-CfP09-LPA-01-69: Insulation Monitoring for IT Grounded (Isolation Terra) Aerospace Electrical Systems
  • JTI-CS2-2018-CfP09-LPA-01-70: Assessment of arc tracking hazards in high voltage aerospace systems
  • JTI-CS2-2018-CfP09-LPA-01-71: Innovative Nacelle cowl opening system
  • JTI-CS2-2018-CFP09-LPA-02-27: Innovative mould for thermoplastic skin of the lower fuselage demonstrator
  • JTI-CS2-2018-CFP09-LPA-02-28: Innovative tooling, end-effector development and industrialisation for welding of thermoplastic components
  • JTI-CS2-2018-CFP09-LPA-02-29: High performance gas expansion system for halon-free cargo hold fire suppression system
  • JTI-CS2-2018-CFP09-LPA-03-16: Automated data collection and semi-supervised processing framework for deep learning
  • JTI-CS2-2018-CFP09-LPA-03-17: Audio Communication Manager for Disruptive Cockpit demonstrator
  • JTI-CS2-2018-CFP09-LPA-03-18: Safe emergency trajectory generator
  • JTI-CS2-2018-CfP09-SYS-01-11: Machine learning to detect Cyber intrusion and anomalies
  • JTI-CS2-2018-CfP09-SYS-01-12: Software engine for multi-criteria decision support in civil aircraft flight management
  • JTI-CS2-2018-CfP09-SYS-01-13: Camera-based smart sensing system for cabin readiness
  • JTI-CS2-2018-CfP09-SYS-01-14: Multi-Material Thermoplastic high pressure Nitrogen Tanks for Aircrafts
  • JTI--CS2-2018-CfP09-SYS-02-56: Additive Manufacturing Magnetic Motor
  • JTI-CS2-2018-CfP09-SYS-02-57: Complex cores for CFRP primary structural products manufactured with high pressure RTM
  • JTI-CS2-2018-CfP09-SYS-03-19: Flexible and Automated Manufacturing of wound components for high reliability
  • JTI-CS2-2018-CfP09-SYS-03-20: Demonstration and test of low-loss, high reliability, high speed, bearing-relief generators
  • JTI-CS2-2018-CfP09-SYS-03-21: Aircraft wing architecture optimal assembly
  • JTI-CS2-2018-CfP09-SYS-03-22: Virtual Testing Based Certification
  • JTI-CS2-2018-CfP09-TE2-01-07: Alternative energy sources and novel propulsion technologies
  • JTI-CS2-2018-CfP09-TE2-01-08: Overall Air Transport System Vehicle Scenarios
  • JTI-CS2-2018-CfP09-TE2-01-09: Environmental regulations and policies
  • JTI-CS2-2018-CFP09-THT-03: Conceptual Design of a 19-passenger Commuter Aircraft with near zero emissions
  • JTI-CS2-2018-CFP09-THT-04: Aircraft Design Optimisation providing optimum performance towards limiting aviation’s contribution towards Global Warming
  • JTI-CS2-2018-CFP09-THT-05: Advanced High Bypass Ratio Low-Speed Composite Fan Design and Validation
  • JTI-CS2-2018-CFP09-THT-06: Research for the development of Particulate Matter (PM) regulations and guidelines.

Le domande dovranno essere presentate entro le ore 17.00 (ora locale di Bruxelles) del 6 febbraio 2019.

Fondi UE: 868 milioni a Napoli per infrastrutture e patrimonio culturale