Horizon 2020 - Clean Sky 2, contributi per ricerca aeronautica

|Novità|16 marzo 2017

Clean sky68,8 milioni di euro per il sesto bando Clean Sky 2 per la ricerca nel settore dell'aeronautica. 

Horizon 2020 - Clean Sky 2, quinto bando su ricerca aeronautica

Horizon 2020 - Clean Sky 2, bando Ue per ricerca aeronautica 

Il 17 aprile si apre il sesto bando Clean Sky 2, con un budget di 68,8 milioni di euro, per finanziare progetti di ricerca e sviluppo destinati ad accrescere la competitività dell'Ue nel campo dell'aeronautica.

Clean Sky 2, programma UE per aeronautica

Clean Sky 2 è il principale programma di ricerca europeo nel settore dell’aeronautica per il periodo 2014-2020 e porterà avanti gli obiettivi del programma precedente, Clean Sky Joint Technology Initiative (JTI), con particolare attenzione alla riduzione delle emissioni di CO2, NOx e rumori dal 20% al 30%.

Al pari di Clean Sky JTI, Clean Sky 2 è un partenariato pubblico-privato (PPP) che coinvolge la Commissione europea, organizzazioni, imprese, centri di ricerca e università di tutta Europa.

Lo strumento è finanziato con 1,75 miliardi di euro dall’Ue nell’ambito del programma europeo per la ricerca e l'innovazione Horizon 2020 e con 2,2 miliardi di euro dai soggetti che aderiscono all'iniziativa, per un investimento totale di circa 4 miliardi di euro.

Sesto bando Clean Sky 2

Il sesto bando Clean Sky 2 ha un budget di 68,8 milioni di euro, articolato su diversi argomenti (topic):

  • JTI-CS2-2017-CFP06-AIR-01-25: Prediction of aerodynamic loads at high Reynolds Number
  • JTI-CS2-2017-CFP06-AIR-01-26: Development of innovative and optimized stiffeners run-out for overall panel weight saving of composite wing
  • JTI-CS2-2017-CFP06-AIR-01-27: Innovative solutions for metallic ribs or fittings introduced in a composite box to optimally deal with thermo-mechanical effects
  • JTI-CS2-2017-CFP06-AIR-01-28: Optimized cockpit windshields for large diameter business aircrafts
  • JTI-CS2-2017-CFP06-AIR-01-29: Optimisation of Friction Stir Welding (FSW) and Laser Beam Welding (LBW) for assembly of structural aircraft parts
  • JTI-CS2-2017-CFP06-AIR-02-39: Integration of innovative ice protection systems into structure and their validation
  • JTI-CS2-2017-CFP06-AIR-02-40: Enhanced Low Cost Complex Composite Structures
  • JTI-CS2-2017-CFP06-AIR-02-41: Integrated electronics for actuator data and power management for Morphing Leading Edge activities
  • JTI-CS2-2017-CFP06-AIR-02-42: Lay-up tools for net-shape AFP-manufacturing of geometrically complex helicopter sideshell sandwich-panels
  • JTI-CS2-2017-CFP06-AIR-02-43: Low cost optical wave guides for damage detection including analysis and aircraft data transfer related to aircraft functional needs with self-testing connection
  • JTI-CS2-2017-CFP06-AIR-02-44: Adjustable high loaded rod
  • JTI-CS2-2017-CFP06-AIR-02-45: Development and deployment of PLM Tools for A/C Ground Functional testing with Eco-design criteria
  • JTI-CS2-2017-CFP06-AIR-02-46: Auto testing technologies and more automated factories for Aircraft validation test process
  • JTI-CS2-2017-CFP06-AIR-02-47: Part specific process optimization in SLM
  • JTI-CS2-2017-CFP06-AIR-02-48: Development and validation of a portable, automated and jigless system for drilling and assembly of fuselage joints
  • JTI-CS2-2017-CFP06-AIR-02-49: Development and validation of a self-adaptive system for automated assembly of major composite aerostructures
  • JTI-CS2-2017-CFP06-AIR-02-50: Prototype Tooling for subcomponents manufacturing for fuselage
  • JTI-CS2-2017-CFP06-ENG-01-15: Bearing chamber in hot environment
  • TI-CS2-2017-CFP06-ENG-01-16: Torque measurement in turbofan
  • TI-CS2-2017-CFP06-ENG-01-17: Advanced turbine system performance improvement through dual-spool rig tests
  • TI-CS2-2017-CFP06-ENG-01-18: Development of innovative methods and tooling for machining of slender shafts
  • TI-CS2-2017-CFP06-ENG-01-19: Thermoplastic Thrust reverser cascade
  • JTI-CS2-2017-CFP06-ENG-01-20: Long Fiber Thrust reverser cascade
  • JTI-CS2-2017-CFP06-ENG-01-21: Aerothermal characterization in the engine compartment
  • JTI-CS2-2017-CFP06-ENG-01-22: Advanced Instrumented Engine cradle of the Turboprop demonstrator
  • JTI-CS2-2017-CFP06-ENG-03-15: IP Turbine Rear Stages Aero/Noise Rigs
  • JTI-CS2-2017-CFP06-ENG-03-16: Development of non-intrusive engine emissions instrumentation capability
  • JTI-CS2-2017-CFP06-ENG-03-17: VHBR Engine – Journal Bearing Technology
  • JTI-CS2-2017-CFP06-ENG-03-18: Development of capability to understand & predict sub-idle & idle behaviour of geared VHBR engines
  • JTI-CS2-2017-CFP06-ENG-03-19: Intermediate Compressor Case Duct Aerodynamics
  • JTI-CS2-2017-CFP06-ENG-04-07: Advanced investigation of ultra compact RQL reverse flow combustor
  • JTI-CS2-2017-CFP06-FRC-01-13: Low-speed Air Data Sensor for Tilt-rotor Control
  • JTI-CS2-2017-CFP06-FRC-01-14: Contactless measurement system for real time monitoring of proprotor flapping angle
  • JTI-CS2-2017-CFP06-FRC-01-15: Interactional aerodynamic assessment of advanced Tilt Rotor configuration
  • JTI-CS2-2017-CFP06-FRC-02-20: Lateral rotor noise prediction dedicated to low noise footprint optimisation of a compound helicopter
  • JTI-CS2-2017-CFP06-FRC-02-21: Emergency Exits and Cabin Footstep for the Fast Rotorcraft
  • JTI-CS2-2017-CFP06-FRC-02-22: Lateral rotor declutching mechanism for a fast compound rotorcraft
  • JTI-CS2-2017-CFP06-FRC-02-23: Enhanced gear strength through cavitation peening technologies
  • JTI-CS2-2017-CFP06-FRC-02-24: Hybrid bearings technologies
  • JTI-CS2-2017-CFP06-FRC-02-25: Fuel System Detail Development, Testing and Manufacturing
  • JTI-CS2-2017-CFP06-FRC-02-26: Compound Rotorcraft Assembly Tooling
  • JTI-CS2-2017-CFP06-FRC-02-27: Rotor’s Flight Test Instrumentation on demonstrator Fast Rotorcraft Project
  • JTI-CS2-2017-CFP06-LPA-01-29: Modelling of installed jet noise for UHBR engine integration with forward flight effects
  • JTI-CS2-2017-CFP06-LPA-01-30: Test Cell Control System for NPE Demonstrator
  • JTI-CS2-2017-CFP06-LPA-01-31: Representative HLFC Leading Edge structure – Torsion and Bending Stiffness Test 
  • JTI-CS2-2017-CFP06-LPA-01-32: Insect contamination investigations and mitigation
  • JTI-CS2-2017-CFP06-LPA-01-33: Multi-physics modelling of elementary physical phenomena applied to an innovative high temperature engine valve
  • JTI-CS2-2017-CFP06-LPA-01-34: 3D printing and harsh environment testing of flow control actuators at aircraft scale
  • JTI-CS2-2017-CFP06-LPA-01-35: Innovative compact heat exchangers modelisation & characterisation
  • JTI-CS2-2017-CFP06-LPA-02-16: SmartContainer
  • JTI-CS2-2017-CFP06-LPA-02-17: Glass fiber based temperature/air humidity and Agent detection sensors & measurement systems
  • JTI-CS2-2017-CFP06-LPA-02-18: Multi-Physics methodology for phase change due to rapidly depressurised two-phase flows
  • JTI-CS2-2017-CFP06-LPA-02-19: High performance Body Landing Gear fittings
  • JTI-CS2-2017-CFP06-LPA-02-20: Manufacturing oriented solution keel beam
  • JTI-CS2-2017-CFP06-LPA-02-21: Development of systems for automated testing in the aircraft interior
  • JTI-CS2-2017-CFP06-LPA-03-09: Image based landing solutions for Disruptive Cockpit concept
  • JTI-CS2-2017-CFP06-LPA-03-10: Avionics Technologies Management solution for Pilot Workload Reduction
  • JTI-CS2-2017-CFP06-LPA-03-11: Multimodal HMI development tools
  • JTI-CS2-2017-CFP06-LPA-03-12: High density Electrical connectors
  • JTI-CS2-2017-CFP06-REG-01-09: Innovative Low Power De-Icing System
  • JTI-CS2-2017-CFP06-REG-01-10: E2-EM Supervisor and Control Algorithms
  • JTI-CS2-2017-CFP06-SYS-01-04: Manufacturing process for ultimate performance inertial MEMS Accelerometer
  • JTI-CS2-2017-CFP06-SYS-01-05: Solutions for voice interaction towards natural crew assistant
  • JTI-CS2-2017-CFP06-SYS-01-06: Affordable Electro-Optical Sensor Cluster/Assembly Unit(LRU) for Vision & Awareness enabling Enhanced Vision, Sense & Avoid, and Obstacle Detection Systems for Aeroplane and Helicopter All-weather Operations and enhanced safety
  • JTI-CS2-2017-CFP06-SYS-02-29: High density energy storage module for an electric taxi
  • JTI-CS2-2017-CFP06-SYS-02-30: Innovative pump architecture for cooling electrical machine
  • JTI-CS2-2017-CFP06-SYS-02-31: Power module
  • JTI-CS2-2017-CFP06-SYS-02-32: Development of functionalizable materials
  • JTI-CS2-2017-CFP06-SYS-02-33: Development of autonomous, wireless, smart and low cost current sensor for monitoring of electrical lines
  • JTI-CS2-2017-CFP06-SYS-02-34: Optical hot air leak detection system proof-of-concept development
  • JTI-CS2-2017-CFP06-SYS-03-09: Computing Node for Safety Critical Applications
  • JTI-CS2-2017-CFP06-SYS-03-10: Electrocoating process for Cr6-free surface treatment of aluminium parts
  • JTI-CS2-2017-CFP06-SYS-03-11: Screening and development of optimized materials (wires, potting resins and impregnating varnishes) for high temperature coils
  • JTI-CS2-2017-CFP06-SYS-03-12: Assessment of Partial Discharge and breakdown behaviour of electric insulation materials for very high voltage gradients

Le domande possono essere presentate dal 17 marzo 2017 ed entro le ore 17.00 (ora locale di Bruxelles) del 21 giugno 2017.

> Aeronautica - ACARE Italia, roadmap per ricerca, sviluppo e innovazione

Photo credit: skyseeker via Foter.com / CC BY